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Abstract—NASA is conducting the Airspace Technology
Demonstration-2 to evaluate an Integrated Arrival, Departure,
and Surface (IADS) traffic management system. The IADS system
is powered by real-time System Wide Information Management
feeds which provide an accurate and high fidelity view of the
lifecycle of a flight. This data can be leveraged to drive efficiencies
in the National Airspace System. For non safety critical appli-
cations there is opportunity for third party service providers to
offer this type of data-driven prediction service in near real-time.
This paper investigates the gate conflict prediction problem as a
concrete use case which could help drive efficiencies. We model
gate conflicts as a regression problem and describe the iterative
process of model building, model validation, and evaluation used
to assess the efficacy of our approach. We quantify our predictive
accuracy and identify paths for improvement. Through this
iterative process we hope to evolve our models and methods to
a near real-time prediction service.

Index Terms—Airspace Technology Demonstration-2, data
driven services, predictive analytics, airport gate conflicts

I. INTRODUCTION

Concepts and technologies to manage arrival, departure, and
surface operations have been under development by NASA,
the Federal Aviation Administration (FAA), and industry to
improve the flow of traffic into and out of the nation’s
busiest airports. To demonstrate these technologies NASA is
conducting the Airspace Technology Demonstration-2 (ATD-
2) to evaluate an Integrated Arrival, Departure, and Surface
(IADS) traffic management system [1], [2].

The IADS concept extends traffic sequencing for the entire
life-cycle of a flight from departure gate to arrival gate within
multi-airport, metroplex environments. The IADS concept
builds on and integrates previous NASA research such as the
Terminal Sequencing and Spacing (TSAS) [3], the Precision
Departure Release Capability (PDRC) [4], and the Spot and
Runway Departure Advisor (SARDA) [5], [6] which each
focused on individual airspace domains. The IADS concept
was initially developed based on the Surface Collaborative
Decision Making (S-CDM) ConOps [7] and refined over time.

The IADS system was deployed to the Charlotte Douglas
International Airport (CLT) for a three year field evaluation

beginning in September 2017. During the field evaluation
the IADS system has succesfully demonstrated three key
capabilities: 1) data exchange and integration, 2) departure
surface metering, and 3) departure scheduling and electronic
negotiation of release time of controlled flights for overhead
stream insertion [8]. The IADS system in CLT is a precursor
of the FAA Terminal Flight Data Manager (TFDM) which
will begin to be rolled out across the United States’ busiest
airports, starting in 2020, after the conclusion of NASA’s field
evaluation [9].

A core idea of the IADS concept is to generate a coordi-
nated schedule which enables a smooth flow of traffic from
gate to runway for departures and from runway to gate for
arrivals [10]. To ensure a smooth flow an arrival flight needs an
available gate or else the arrival flight will be considered to be
in a gate conflict. To resolve the gate conflict ramp controllers
typically hold the arrival in either the Airport Movement Area
(AMA) or the ramp area. As the number of gate conflicts
increases the complexity and workload for ramp controllers
increase [11].

In the future TFDM system the ATC Traffic Management
Coordinator (TMC) will be required to set parameters for
surface metering which could impact the number of gate
conflicts. To help inform the TMC about the impact of the
selected parameters TFDM requirements include a prediction
of the number of gate conflicts in upcoming Surface Metering
Programs (SMP) [12]. The TMC can use this prediction to help
calibrate the parameters that govern the amount of excess taxi
time that is passed from the AMA back to the gate.

Too often, the development and implementation of new
capabilities within the traditional FAA systems has involved
cost and or schedule overruns that detract from the anticipated
operational value, or involve times to acquire or develop that
are not sufficiently responsive to the needs of a changing
environment [13]. For non safety critical applications, there
is opportunity for third party service providers to offer this
type of data-driven prediction in near real-time. Both the IADS
system and the future TFDM system are powered by real-time
FAA System Wide Information Management (SWIM) [14]



data feeds. The real-time data published across the SWIM
cloud enables a software layer on the other side of SWIM to
ingest these feeds and provide near real-time decision support
outside of the traditional FAA systems.

In this paper we explore the gate conflict prediction problem
as a concrete example for a data-driven service that could
help drive efficiencies. The purpose of this paper is to explain
the iterative process of model building, model validation, and
evaluation used to assess the efficacy of our approach. We
aim to quantify our predictive accuracy and identify paths for
improvement. Through the iterative approach we expect for
our models and methods to evolve as the data informs us.

The remainder of the paper is organized as follows. In
Section II we provide background information on gate conflict
research. Section III describes the different data feeds the
IADS system pulls from SWIM and the NASA-developed
Fuser technology that is foundational to building a cohesive
view of a single flight. In Section IV we implement various
regression models and estimate the accuracy for out of sample
data. In Section V we describe directions for future research.
Lastly, Section VI provides concluding remarks.

II. BACKGROUND ON GATE CONFLICTS

Previous research has found the number of gate conflicts
is influenced by the airline schedules. There is a relationship
in the scheduling practice involving bank operations and the
time interval between banks that influences the requirement
for gates [15]. Moreover, the fluctuation of the actual demand
from the scheduled demand creates additional potential for
gate conflicts.

To mitigate the impact of gate conflicts, researchers have in-
vestigated different forms of the gate assignment problem [16].
Various objective functions have been considered, including a
robust gate assignment which aims to minimize the number of
gate-reassigned aircraft [17], [18] and a gate assignment that
aims to minimize the variance of idle times at the gates [19].
Others considered the gate assignment problem to minimize
physical conflicts in the ramp area and reduce interaction
between the arrivals and departures [20].

Whereas previous research focused on strategies to mitigate
gate conflicts, they did not work towards predicting time peri-
ods or specific banks when gate conflicts would be expected to
be elevated. In this paper we present a model to predict both
the count of gate conflicts and the rate of gate conflicts per
arrival flight within a bank of operations. This work is enabled
by newly available data that is generated by the IADS system.
High fidelity data elements such as the Earliest Off Block Time
(EOBT) in combination with FAA SWIM feeds are leveraged
for gate conflict predictions.

Identifying and labeling gate conflicts are non trivial tasks.
Since two aircraft can’t occupy the gate at the same time, the
Actual Off Block Time (AOBT) and Actual In Block Time
(AIBT) for the departure and arrival, respectively, will not
provide insights to whether or not a gate conflict occurred.
Labeling of gate conflicts by ramp controllers would be
the most accurate approach. However, this approach is not

realistic as capturing such a data element would increase ramp
controllers’ workload to unacceptable levels.

To address this challenge the IADS system leverages a
combination of actual and predicted events to label an arrival
as a gate conflict. At the time point that the arrival touches
down at CLT, the IADS system generates an Unimpeded In
Block Time (UIBT) which represents the time the system
expects the arrival to get to the assigned gate. At the time point
that the arrival touches down, the system also has a prediction
of when the departure will push back from the same gate in the
form of the Unimpeded Off Block Time (UOBT) outside of
surface metering or a Target Off Block Time (TOBT) during
surface metering. If the UIBT ≤ UOBT + buffpush (TOBT
+ buffpush during surface metering) then the arrival flight is
labeled as a gate conflict. The parameter buffpush defines the
expected time the departure will occupy the gate during the
pushback process.

In addition to departures, aircraft not currently associated
with a flight are persisted at the gate. The location of these
persisted aircraft are manually updated in the system by the
ramp managers and controllers when they are towed to and
from the gates. If an arrival is destined for a gate with a
persisted aircraft, the arrival will be labelled as a gate conflict.

Other definitions of a gate conflict could be used which
account for the intensity of the gate conflict by requiring UIBT
≤ UOBT + buffpush−∆ to label an arrival a gate conflict. In
this definition ∆ is a parameter defining the minimum duration
of the gate conflict and the value could be determined by
Subject Matter Experts (SMEs). For example, if SMEs agree
that a gate conflict less than five minutes should not be labeled
as a gate conflict, then we can define ∆ = 5.

Even with leveraging the actual and predicted events the
identified gate conflicts might not materialize. Similarly, ar-
rivals that are identified to not have a gate conflict could still
experience a gate conflict if the departure occupying the gate
pushes back later than expected. Although these challenges are
present in the data our methodology to identify gate conflicts
is reasonable given the current system.

III. DATA SOURCES AND PREPROCESSING

A. Data Sources

The ATD-2 IADS system is powered by real-time SWIM
data feeds including Traffic Flow Management System
(TFMS), SWIM Terminal Data Distribution System (STDDS),
SWIM Flight Data Publication Service (SFDPS), Time Based
Flow Management (TBFM), Terminal Flight Data Man-
ager (TFDM), and Terminal Automation Information Service
(TAIS) [21]. These SWIM data feeds are complemented by
other data sources such as ramp surveillance and gate infor-
mation provided by the airline operators.

The SWIM feeds contain valuable data but can provide
inconsistent information on the same flight that is difficult
for consumers to understand. Without deep knowledge of the
underlying 3T (TFMS, TBFM, and TFDM) systems, plus
FAA air traffic systems En Route Automation Modernization
(ERAM) and Standard Terminal Automation Replacement



Fig. 1. Data architecture and data flow between SWIM, ATD-2, and airline.

System (STARS), the consumption logic may not lead to-
ward the benefit the community desires [22]. To address this
potential mismatch, ATD-2 invested in developing the logic
that could address SWIM flight data processing and mediation
complexities. Much of this work is embodied in the Fuser
service which is illustrated in Fig. 1. The Fuser framework
mediates between the disparate sources of data, pulling in the
right data, at the right time. The Fuser leverages heuristics
and analysis on which data source is best to use for a specific
need and provides access to the information in a common well
defined data model.

The fused data sources are used as input by the ATD IADS
system and the output is written to a database. In addition
to consuming SWIM data the IADS system publishes the
TFDM Terminal Publication (TTP) feed back to SWIM and
can be consumed within the SWIM Research and Development
(R&D) environment. The ATD-2 TTP feed on the SWIM R&D
matches the specifications of the future TTP feed to foster
industry innovation in preparation for TFDM.

The data written to the database is valuable but often too
verbose to be used effectively for analysis. To address this
problem, ATD-2 developed the Flight Summary report to
serve analysts and user needs [23]. The Flight Summary helps
standardize the ATD-2 approach to handling such conditions
as human inputs, business logic, measurement convention,
complexities of data mediation, order of processing mes-
sages, and changes from earlier versions of ATD-2 software.
The Flight Summary is generated every morning for post-
operations analysis about the previous day operations and
contains each unique flight as a row containing over 500
columns of unique data elements and predictions captured at
some discrete points in time. A subset of the flights included in
the Flight Summary files are distributed to the airline operators
for their internal analysis.

B. Data Preprocessing for Machine Learning

In this paper we use data from the Flight Summary files
between 2018-01-01 and 2019-09-30 and focus on departures
and arrivals operating within an identified scheduled or actual
bank. A bank of traffic is a concentrated period of demand
and can be identified for the departures, arrivals, or the total
operations. Airlines typically define banks by the original

scheduled demand and static boundaries in time that define
the stop and start of the bank. In contrast, the IADS system is
capable of defining banks by both the scheduled demand and
actual demand and the boundaries that define the start and
end time of the bank are dynamic and adapt with the profile
of scheduled or actual demand.

To identify the banks and the associated start and stop times
we use the DBSCAN [24] clustering algorithm to label banks
based on the density of gate or runway operations. Using this
approach we can cluster banks on the density of scheduled or
actual demand and can also define and identify banks using
a gate-centric or runway-centric view of operations. We find
the clustering approach to be more informative than using
a bank definition with static start and stop times. As the
actual demand fluctuates from the scheduled demand, the bank
has the potential to shift earlier or later than the static bank
definition and the clustering approach is able to capture this
shift and adapt our bank start and stop times to better represent
what happened.

The first step in the workflow is data preprocessing. We
begin by selecting a subset of the available data elements and
metrics available in Flight Summary to use as features in our
gate conflict prediction model. The selected features are shown
in the data dictionary provided in the appendix. We filter out
any bank containing a feature that deviates more than 3.5 times
the InterQuartile Range (IQR) away from the median. Before
filtering we had 3197 distinct banks and after the filtering
process we are left with 1956 unique banks representing 61%
of the original data. After filtering we normalize the data such
that each metric is transformed to have mean equal to zero
and unit variance.

The filter we implemented is relatively conservative given
that it only excludes banks that contain a metric deviating
more than 3.5 times the IQR. It was surprising to see the
filter eliminated 39% of the overall data. This is indicative of
the overall uncertainty and noise in the data. The prediction
accuracy and results shared in Section IV-E should be taken
in context with the understanding that the underlying data is
noisy and that the quality of the signal extracted could be
impacted by the uncertainty.

IV. GATE CONFLICT REGRESSION

In this section we investigate two different flavors of the gate
conflict regression problems. In the first problem we define the
target as the count of gate conflicts within a distinct bank. In
the second problem we define the target as the fraction of gate
conflicts per arrival to normalize our predictions against the
overall arrival demand. For each target we consider the 37
features described in the data dictionary. For each target we
consider a Support Vector Machine (SVM) regression and a
Gradient Boost (GB) regression.

To validate the entire workflow we implement an iterative
cycle of feature selection, hyperparameter tuning, and model
validation shown in Fig. 2. After iterating through this cycle
ten times the validation metrics are evaluated by a Subject



Fig. 2. ATD-2 predictive analytics workflow.

Matter Expert (SME) and potential improvements are identi-
fied and investigated. Through this repeated process we aim
to develop a model capable of near real-time application.

To implement the validation we use the scikit-learn [25]
library for Python. For feature selection, hyperparameter tun-
ing, and measuring prediction accuracy we use Recursive
Feature Elimination Cross Validation (RFECV) [26], Grid
Search Cross Validation (GridSearchCV) [27], and negative
mean squared error (mean squared error) [28], respectively.

A. Model Validation

The validation process is described in Python psuedo-code
in Algorithm 1. The algorithm is illustrated using the SVM
regressor but the same process was implemented for the
GB regressor. To better understand the confidence we have
in our estimated validation metrics, we implement multiple
loops through the feature selection, hyperparameter tuning,
and validation. For each loop we save the data to analyze
the distribution and estimate the mean with associated 95%
confidence interval for the mean.

We iterate through ten loops where we first randomly split
the data 70/30 into a TRAIN and TEST set. For the TRAIN set
we call RFECV to select a subset of the features to use. After
the features are identified, we iterate through five loops where
we randomly shuffle the data and then call GridSearchCV
and record the results. The combination of hyperparameters
showing the best results are then used to fit the model to
the TEST set and the performance is saved for evaluation in
Section IV-E.

B. Feature Selection

For the SVM regression it is important to identify the subset
of features that provide good performance for the given target.
To identify the optimal set of features is computationally
expensive so we implement a heuristic approach based on
RFECV. Whereas the features identified by RFECV might not
be optimal, in practice they seem to be acceptable from a
prediction accuracy perspective.

To identify features using RFECV, first the estimator is
trained on the initial set of features and k-fold cross validation
is implemented to calculate the negative Mean Squared Error
(nMSE) for the given set of features. The importance of each

Algorithm 1 Cross Validation Including Model Selection and
Hyperparameter Tuning

from sklearn.svm import SVR
from sklearn.feature selection import RFECV
from sklearn.model selection import GridSearchCV
from sklearn.metrics import mean squared error
results = []
for i=1:30 do

cv score = []
TRAIN = df.sample(frac=0.7,replace=False)
TEST = df.drop(TRAIN.index)
rfecv = RFECV(TRAIN)
rfecv.fit(TRAIN[input],TRAIN[target])
features = rfecv.support
regr model = SVR()
for j=1:5 do

TRAIN temp = TRAIN.sample(frac=1,replace=False)
clf = GridSearchCV(regr model, param grid, cv=3)
clf.fit(TRAIN temp[features],TRAIN temp[target])
cv score.append(clf.cv results )

end for
selected hyperparameters = cv score.sort()
regr model final = SVR(selected hyperparameters)
regr model final.fit(TRAIN[features],TRAIN[target])
pred values = regr model final.predict(TEST[features])
final scores = - mean squared error(TEST[target],pred values)
results.append(final scores)

end for

feature is obtained from the fitted coefficients and the least
important feature is pruned from the current set of features.
That procedure is recursively repeated on the pruned set. The
set of features that generated the largest nMSE is selected
and used in the remainder of outer loop i, described in
Algorithm 1. The results of this process are shown in Fig. 3
and the identified number of features is illustrated with an
orange star.

Throughout the iteration process through the outer loop i
described in Algorithm 1, we noticed that the features returned
by RFECV seemed sensitive to the random selection of the
original TRAIN data set. Whereas the general shape and
value of the curves describing the nMSE as a function of the
number of features was stable, the exact maximum of that
curve was vulnerable to fluctuations due to the saturation in
prediction accuracy as features increase. In future work, our
implementation of RFECV might be improved upon in terms
of stability by selecting features within some threshold of the
maximum.

C. Hyperparameter fitting

The performance of the SVM and GB regressors can
be improved by properly selecting the hyperparameters of
the model. For the SVM, the hyperparameters we consider
are the kernel type and the parameters C and ε and we
search over the grid defined by kernel ∈ {linear, rbf, poly} ×



Fig. 3. Support vector regression feature selection.

C ∈ {1, 2, .., 10} × ε ∈ {0.1, 0.2, .., 2}. For the GB, the
hyperparameters we consider are the learning rate, num-
ber of estimators, max depth, and min samples leaf. For
the GB model, we search over the grid defined by learn-
ing rate ∈ {0.01, .021, ..2.01}× number of estimators ∈
{100, 200, 300}× max depth ∈ {1, 2, 3}× min samples leaf
∈ {1, 3, 5, 8}× sub sample ∈ {0.5, 1}.

To perform the grid search over hyperparameters we use
GridSearchCV function. GridSearchCV iterates over each
combination of hyperparameters, performs 3-fold cross vali-
dation and returns the nMSE averaged over the 3 folds. When
we implement the 3-fold cross validation on our TRAIN data
set containing 1369 rows, we split the data up into 3 discrete
subsets of 456 observations. We select one of the three subsets
as the test set and use the other 2 subsets as the training set.
With only 456 observations in the test set, we observe that the
prediction performance can vary.

To better understand the prediction performance of the
hyperparameters in the context of the relatively small sample
size, we randomly shuffle the data before we pass it to
GridSearchCV and repeat this process 5 times. Each of the
5 random shuffles of the data will implement the 3-fold
cross validation process on a unique discretization of the data
and will generate an average nMSE across the 3 folds. The
distribution of the average nMSE across the 5 random shuffles
is shown in Fig. 4. The performances of SVM with linear, rbf,
and poly kernel are illustrated in yellow, green, and purple
respectively and the performance of GB is illustrated in blue.

As can be seen in Fig. 4, the performance between the
different methods varies. These results are for visualization
purposes only as the final validation will be done using the
TEST dataset. For the target count gate conflict the SVM with
linear kernel showed the best performance and for the target
gate conflict per arrival the GB showed the best performance.
For each of these methods we plot the distribution of the
average nMSE across the five random samples for the top
three hyperparameter combinations with the best combination

Fig. 4. Hyperparameter results.

plotted with a darker color. For Subsections IV-D and IV-E
the SVM and GB methods use the best hyperparameter com-
bination illustrated with darker color in Fig. 4.

D. Feature Importance

For the SVM with linear kernel and the GB regressor we
can use the coef and feature importances attributes of the
model to evaluate the relative importance of the features. For
the SVM the relative importance of the features is estimated
with the square of the coefficients [29]. The mean value and
standard deviation for the SVM squared coefficient and the GB
feature importance aggregated from the ten iterations through
the outer loop i in Algorithm 1 are shown in Figs. 5 and 6
for the target count gate conflicts and the target gate conflicts
per arrival, respectively.

For the target count gate conflicts the top four features for
SVM ranked from most to least important were 6, 20, 25, and
2, whereas the top four features for GB ranked from most to
least important were 35, 6, 20, and 22. Features 6 and 20 show
up for both SVM and GB and are the count of total arrivals
and the mean arrival schedule delay predicted at landing. The
arrival schedule delay predicted at landing metric is captured
when the arrival lands, and measures how early or late the
arrival is with respect to its Scheduled In Block Time. The
most important feature for GB was the count of arrivals with



Fig. 5. Feature importance for Target = count gate conflict.

Undelayed In Time at Landing earlier than the end of the
actual departure bank, defined by the time the last departure
in the bank pushes back.

For the target gate conflicts per arrival, the top four features
for SVM were 20, 32, 3, and 35 and the top four features for
GB were 35, 20, 22, and 34. Again we find features 20 and 35
important, which are related to how early or late the arrival is
at landing with respect to its Scheduled In Block Time and the
count of arrivals with Undelayed In Time at Landing earlier
than the end of the actual departure bank.

Overall it seems that both the SVM and the GB regressors
tend to identify the features related to metrics capable of
detecting early arrivals and metrics capable of detecting the
interaction between the arrival and departure banks. The early
arrivals make sense as a mechanism to increase gate conflicts
as the airline schedules only provide small buffers between
when a departure occupies the gate and the subsequent arrival
is scheduled to arrive.

Other features of interest include features 10-14 describing
the controlled flights and surface metered flights. None of these
features were identified as important as the ones previously
discussed. We notice that for the target gate conflict per
arrival, the SVM identified the count of surface metered
flights as having some importance, but identified the total gate
hold as having no importance. This could be indicative that

Fig. 6. Feature importance for Target = gate conflict per arrival.

the underlying congestion and demand which has triggered
metering is leading to gate conflicts rather than the actual gate
holding associated with metering leading to gate conflicts. We
note that only a fraction of banks between 2018-01-01 and
2019-09-30 were surface metered, which might obscure the
relationship if one were to exist. Given the importance of gate
conflicts in the context of surface metering this is an important
relationship to keep in mind and to continue to investigate in
future research.

E. Validation Results

The results of the validation described in Algorithm 1 in
the form of the distribution for the nMSE and the explained
variance R2 are shown in Figs. 7 and 8, respectively. A
summary of the results in the form of the estimated 95%
confidence interval for the mean of the nMSE and R2 are
shown for the two targets count gate conflicts and gate conflict
per arrival in Tables I and II, respectively.

As can be seen in the figures and tables, the nMSE and R2

metrics are similar between the SVM and GB regressors. Since
we normalized the target with mean zero and unit variance we
can easily interpret the results of the nMSE in relation to a
prediction rule that always uses the average value. A nMSE of
less than −1.0 represents a rule with worse performance than
always predicting the average, and a nMSE greater than −1.0



Fig. 7. Validation results for nMSE.

represents a rule with better performance. For the target count
gate conflict we estimate the nMSE to be −0.62 and −0.62
for the SVM and GB, respectively. Similarly, for the target
gate conflict per arrival we estimate the nMSE to be −0.71
and −0.69, respectively.

TABLE I
TARGET: COUNT GATE CONFLICT

Model nMSE R2

Target = count gate conflict Target = count gate conflict
SVM 95% CI = [−0.64,−0.61] 95% CI = [0.36, 0.38]
GB 95% CI = [−0.65,−0.61] 95% CI = [0.37, 0.39]

TABLE II
TARGET = GATE CONFLICT PER ARRIVAL

Model nMSE R2

SVM 95% CI = [−0.73,−0.70] 95% CI = [0.29, 0.31]
GB 95% CI = [−0.71,−0.68] 95% CI = [0.28, 0.30]

Comparing the sum of the squared error to the variance
in the data we can calculate the explained variance R2. The
R2 results show that the fraction of the variance in the target
that is explained by the SVM and GB regressors are 0.37 and

Fig. 8. Validation results for R2

0.38 for the target count gate conflict and 0.30 and 0.29 for
the target gate conflict per arrival, respectively.

Overall, we interpret these results as a detectable but weak
signal. Without examples of other gate conflict prediction
models and their prediction accuracy, it is hard to put the
results in context. Given the complexity and uncertainty on
the airport surface, different phases of surface operations such
as ramp taxi have proven difficult to accurately predict [30].
Moving forward, the validation results of the SVM and GB
regressors will be used as a data point to provide context in
the evaluation of improved models.

V. FUTURE WORK

The general direction of future work is to continue to pursue
concrete examples of data-driven services that could help drive
efficiencies in the NAS. At this early stage in the research,
the identification of good use cases is as important as the
development of the models. We hope through the identification
of use cases we can draw the attention of the aviation and data
science communities towards the opportunity to develop this
software layer of services on the other side of SWIM.

The immediate direction for the gate conflict prediction
research is to explore techniques to improve the prediction
performance. The results shown in this paper were focused
on features derived from descriptive metrics of the bank. A



different approach might focus on predicting individual gate
conflicts at the flight level and aggregating the results across
the bank. An approach based on an individual flight level gate
conflict prediction could leverage the high fidelity schedule
and surveillance systems to drive more accurate predictions.

Further analysis is needed to understand the relationship be-
tween the different features and their impact on gate conflicts.
In this analysis, we identified the relationship between the
arrival bank and departure bank as important when predicting
gate conflicts. This relationship will be investigated further
including exploring new metrics which could capture and
quantify this relationship in new or better ways. We also note
that the SVM showed a potential relationship between gate
conflicts and flights that are controlled or surface metered.
If we find that there are specific situations where surface
metering is having a negative impact for gate conflicts we
can explore the idea to alert the Air Traffic Control (ATC)
Traffic Management Coordinator (TMC) that some particular
banks should not be surface metered.

Once the model has been improved to the desired level of
accuracy, there is a need to transition the model from post
operations analysis (post-ops) to a real-time environment. We
expect this transition from post-ops to real-time to be non-
trivial. The data elements and metrics that we find valuable
in post-ops might not be readily available in real-time. For
example, the relationship between the departure and arrival
banks which we identified as important features require the
identification of the start and end of each bank. In post-ops,
the start and end of the bank can be consistently determined
by our clustering approach but real-time identification of the
start and end of a bank would be based on predicted times, as
opposed to actual times, which could impact the performance
of the model.

VI. CONCLUSION

In this paper we introduced the gate conflict prediction
problem as a concrete example of a data-driven service that
could be implemented in near real-time within a software
layer on the other side of SWIM. The gate conflict prediction
problem is relevant to the future TFDM concept as the system
is required to provide a prediction of the number of gate
conflicts in the upcoming SMP to help the ATC TMC calibrate
parameters that govern the amount of excess taxi time that is
passed back from the departure queue to the gate. For non-
safety critical applications, these types of third-party decision
support services could help drive efficiencies throughout the
National Airspace System.

As a first step in this direction, we implemented and
analyzed the performance of regression models applied to the
gate conflict prediction problem. The features we used were
descriptive metrics aggregated at a bank level. For the target
metrics, we considered count gate conflicts and gate conflicts
per arrival. The models were developed in post-ops analysis
to assess our ability to detect a signal and to explore the
relationship between the target variables and the features.

The analysis showed a weak but detectable signal between
gate conflicts and the features based on the descriptive metrics
of the bank. The most important features were determined to
be features related to metrics capable of detecting early arrivals
and metrics capable of detecting the interaction between the
arrival and departure banks. An important avenue of future
research will be to explore different features aggregated at
the bank level, or the individual flight level, and assess their
predictive accuracy.

Overall, the current level of prediction accuracy is not
high enough for real-time decision support, but it is hard to
fully evaluate the efficacy of our approach in the absence of
other gate conflict prediction models. Moving forward, as we
continue to develop and evolve our gate conflict prediction
model these results will provide a valuable data point to anchor
our expectations.
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APPENDIX

Feature #1: Count total operations - Count of departure
and arrival operations

Feature #2: Count departures: Count of departure operations

Feature #3: Ratio departures ACTUAL vs. SCHEDULED:
Count of ACTUAL departure operations divided by count of
SCHEDULED departure operations

Feature #4: Count departures East: Count of departure
operations using the East runway

Feature #5: Count departures Center: Count of departure
operations using the center runway

Feature #6: Count arrivals: Count of arrival operations

Feature #7: Ratio arrivals ACTUAL vs SCHEDULED:
Count of ACTUAL arrival operations divided by count of
SCHEDULED arrival operations

Feature #8: Count arrivals East: Count of arrival operations
using the East runway

Feature #9: Count arrivals West: Count of arrival operations
using the West runway

Feature #10: Count controlled: Count of controlled
departure operations that are subject to APREQ or EDCT at
actual OFF

Feature #11: Percentage controlled: Count of controlled
departure operations divided by total departure operations

Feature #12: Count surface metered: Count of surface
metered departure operations

Feature #13: Percentage surface metered: Count of surface
metered departure operations divided by total departure
operations

Feature #14: Total surface metered gate hold: Sum of total
gate hold for surface metered departures

Feature #15: Departure median EOBT accuracy: Departure
median EOBT accuracy measured as (Pilot Ready Time -
EOBT ) where the EOBT is sampled 20 minutes prior to
Pilot Ready Time

Feature #16: Departure EOBT standard deviation:
Departure standard deviation of (Pilot Ready Time - EOBT )
where the EOBT is sampled 20 minutes prior to Pilot Ready
Time

Feature #17: Actual bank overlap at runway:
min[Actual Landing Time] - min[Actual Take Off Time],
measures the overlap of ACTUAL arrival bank and ACTUAL
departure bank at the runway.

Feature #18: Actual bank overlap at gate:
min[Undelayed In Time at Landing] - max[AOBT], measures
the overlap of ACTUAL arrival bank and ACTUAL departure
bank at the gate.

Feature #19: Scheduled bank overlap at gate: min[SIBT]
- max[SOBT], measures the overlap of SCHEDULED arrival
bank and SCHEDULED departure bank at the gate.

Feature #20: Arrival schedule delay predicted at landing
median: Arrival median (Unimpeded In Time at Landing -
SIBT), measures the arrival delay compared to the schedule



at actual on

Feature #21: Arrival schedule delay predicted at landing
mean: Arrival mean (Unimpeded In Time at Landing - SIBT),
measures the arrival delay compared to the schedule at actual
on

Feature #22: Departure schedule delay median: Departure
median (AOBT - SOBT), measures the departure delay
compared to the schedule at actual out

Feature #23: Departure schedule delay mean: Departure
mean (AOBT - SOBT), measures the departure delay
compared to the schedule at actual out

Feature #24: Departure SCHEDULE bank duration at the
gate: Departure SCHEDULED bank duration max[SOBT] -
min[SOBT] at the gate

Feature #25: Departure ACTUAL bank duration at the
gate: Departure ACTUAL bank duration max[AOBT] -
min[AOBT] at the gate

Feature #26: Departure bank duration compression at
the gate: Departure ACTUAL bank duration divided by
SCHEDULED bank duration at the gate

Feature #27: Arrival SCHEDULE bank duration at the
gate: Arrival SCHEDULED bank duration max[SIBT] -
min[SIBT] at the gate

Feature #28: Arrival ACTUAL bank duration at the gate:
Arrival ACTUAL bank duration max[AOBT] - min[AOBT]
at the gate

Feature #29: Arrival bank duration compression at
the gate: Arrival ACTUAL bank duration divided by
SCHEDULED bank duration at the gate

Feature #30: Count ACTUAL departures in arrival
SCHEDULED bank: Count of departures with AOBT ≥
min[Undelayed In Time at Landing]

Feature #31: Percent ACTUAL departures in arrival
SCHEDULED bank: Count of departures with AOBT ≥
min[SIBT] divided by total departure operations

Feature #32: Count ACTUAL departures in arrival
ACTUAL bank: Count of departures with AOBT ≥
min[Undelayed In Time at Landing] divided by total
departure operations

Feature #33: Count ACTUAL arrivals in departure
SCHEDULED bank: Count of arrivals with
Undelayed In Time at Landing ≤ max[SOBT ]

Feature #34: Percent ACTUAL arrivals in
departure SCHEDULED bank: Count of arrivals with
Undelayed In Time at Landing ≤ max[SOBT ] divided by
total arrival operations

Feature #35: Count ACTUAL arrivals in
departure Actual bank: Count of arrivals with
Undelayed In Time at Landing ≤ max[AOBT ]

Feature #36: North flow: One hot encoding variable
indicating North flow operations

Feature #37: South flow: One hot encoding variable
indicating South flow operations


